Meio Ambiente (Brasil)

Periódico de Acesso Aberto

QUALIS-CAPES

B1

2021-2024
quadriênio

Idioma

Meio Ambiente (Brasil)

e-ISSN: 2675-3065 | ISSN: 2675-3065


Resumo

Macroalgas desempenham um papel central na mitigação das mudanças climáticas e na regeneração ambiental marinha, devido à sua capacidade de sequestrar carbono e fornecer serviços ecossistêmicos críticos. Esta revisão crítica sintetiza estudos recentes sobre a contribuição das macroalgas para o carbono azul, destacando mecanismos de captura, armazenamento e transferência de carbono para sedimentos marinhos. A análise enfatiza a importância da biomassa de macroalgas como recurso sustentável, capaz de apoiar práticas de mitigação de carbono e restaurar habitats costeiros degradados. Além disso, são discutidos os desafios da gestão ambiental e da implementação de sistemas de cultivo de macroalgas que conciliem produtividade, biodiversidade e sustentabilidade marinha. Lacunas de pesquisa são identificadas, incluindo a necessidade de padronização metodológica, monitoramento de longo prazo e avaliação integrada de impactos ecológicos e socioeconômicos. Os resultados indicam que políticas e práticas de manejo adequadas podem maximizar os benefícios das macroalgas para a mitigação de carbono e regeneração de ecossistemas costeiros, reforçando seu potencial como ferramenta estratégica na conservação marinha e no combate às alterações climáticas.

Referências

  • Anderson, K., Buck, H. J., Fuhr, L., Geden, O., Peters, G. P., & Tamme, E. (2023). Controversies of carbon dioxide removal. Nature Reviews Earth & Environment, 4(12), 808–814.
  • Araújo, P. G., Nassar, C. A. G., Barros-Barreto, M. B., Oliveira, M. C., & Plastino, E. M. (2020). Monitoring environmental risk of the exotic species Kappaphycus alvarezii (Rhodophyta), after two decades of introduction in southeastern Brazil. Botanica Marina, 63(6), 551–558.
  • Baghel, R. S., Reddy, C. R. K., Jha, B., & Singh, R. P. (2014). Growth, pigments, and biochemical composition of marine red alga Gracilaria crassa. Journal of Applied Phycology, 26, 2143–2150.
  • Bak, U. G., Gregersen, Ó., & Infante, J. (2020). Technical challenges for offshore cultivation of kelp species: Lessons learned and future directions. Botanica Marina, 63(4), 341–353.
  • Bannister, J., Sievers, M., Bush, F., & Bloecher, N. (2019). Biofouling in marine aquaculture: A review of recent research and developments. Biofouling, 35(6), 631–648.
  • Bar-Shai, N., Levi, T., & Shpigel, M. (2021). Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering. Scientific Reports, 11(1), 11843.
  • Bertocci, I., Araújo, R., Oliveira, P., & Sousa-Pinto, I. (2015). Potential effects of kelp species on local fisheries. Journal of Applied Ecology, 52(5), 1216–1226.
  • Boettcher, M., Geden, O., & Schenuit, F. (2023). Into the blue: The role of the ocean in climate policy. Europe needs to clarify the balance between protection and use. SWP Comment.
  • Cai, J., Lovatelli, A., Stankus, A., & Zhou, X. (2021). Seaweed revolution: Where is the next milestone? FAO Aquaculture Newsletter, 63, 13–16.
  • Camus, C., Infante, J., & Buschmann, A. H. (2019). Revisiting the economic profitability of giant kelp Macrocystis pyrifera (Ochrophyta) cultivation in Chile. Aquaculture, 502, 80–86.
  • Cao, J., Wang, J., Zhang, X., & Zhao, B. (2016). Porphyra species: A mini-review of its pharmacological and nutritional properties. Journal of Medicinal Food, 19(2), 111–119.
  • Castelar, B., de Siqueira, M. F., Sánchez-Tapia, A., & Reis, R. P. (2015). Risk analysis using species distribution modeling to support public policies for the alien alga Kappaphycus alvarezii aquaculture in Brazil. Aquaculture, 446, 217–226.
  • Chandrasekaran, S., Nagendran, N. A., Pandiaraja, D., Krishnankutty, N., & Kamalakannan, B. (2008). Bioinvasion of Kappaphycus alvarezii on corals in the Gulf of Mannar, India. Current Science, 94(9), 1167–1172.
  • Checa, D., Pérez, A., Rodríguez, J., & Morales, E. (2024). Circularity assessment in aquaculture: The case of integrated multi-trophic aquaculture (IMTA) systems. Fishes, 9(5), 165.
  • Chiaramonte, A. R., Gurgel, C. F. D., Oliveira, M. C., & Plastino, E. M. (2019). Gracilaria caudata (Gracilariales, Rhodophyta) is reproductively compatible along the whole Brazilian coast. Journal of Applied Phycology, 31, 931–937.
  • Dahai, H., Zhihong, Y., Lin, Q., Yuhong, L., Lei, T., Jiang, L., & Liandong, Z. (2024). The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis. Renewable and Sustainable Energy Reviews, 197, 114417.
  • De Freitas Nunes-Neto, N., Do Carmo, R. S., & El-Hani, C. N. (2009). Uma conexão entre algas e nuvens: Fundamentos teóricos da hipótese CLAW e suas implicações para as mudanças climáticas. Oecologia Brasiliensis, 13(4), 596–608.
  • De Jesus, P. B., Machado, G. E. M., & De Azeredo Muniz, R. (2014). Macroalgas marinhas como indicadores de impactos ambientais em Itacoatiara, Niterói, RJ: Subsídios para futuros programas de monitoramento ambiental. Caderno de Estudos Geoambientais (CADEGEO), 4(1).
  • Duarte, C. M., Hendriks, I. E., Krause-Jensen, D., Marbà, N., & Agustí, S. (2025). Carbon burial in sediments below seaweed farms matches that of Blue Carbon habitats. Nature Climate Change, 1–8.
  • Duarte, C. M., Wu, J., Xiao, X., Bruhn, A., & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4, 100.
  • Duffy, J. E., Stachowicz, J. J., Reynolds, P. L., Carr, M. H., Losi, V., Loreau, M., ... & Duarte, C. M. (2019). Toward a coordinated global observing system for seagrasses and marine macroalgae. Frontiers in Marine Science, 6, 317.
  • Epstein, G., & Smale, D. A. (2017). Undaria pinnatifida: A case study to highlight challenges in marine invasion ecology and management. Ecology and Evolution, 7(20), 8624–8642.
  • Fabricius, K. E., Crossman, K., Jonker, M., Mongin, M., & Thompson, A. (2023). Macroalgal cover on coral reefs: Spatial and environmental predictors, and decadal trends in the Great Barrier Reef. PLoS ONE, 18(1), e0279699.
  • Farghali, M., Mohamed, I. M., Osman, A. I., & Rooney, D. W. (2023). Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environmental Chemistry Letters, 21(1), 97–152.
  • Fricke, A., Schupp, M. F., D’Angelo, S., Barbier, M., Christie, H., Peteiro, C., ... & Buck, B. H. (2024). Ecosystem services provided by seaweed cultivation: State of the art, knowledge gaps, constraints and future needs for achieving maximum potential in Europe. Reviews in Fisheries Science & Aquaculture, 33(2), 238–256.
  • Fujita, R., Wignall, T., Karr, K., Battista, W., Shumway, S. E., & Costa-Pierce, B. A. (2023). Seaweed blue carbon: Ready? Or not? Marine Policy, 155, 105747.
  • Green, B. N.; Johnson, C. D.; Adams, A. (2006). Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of Chiropractic Medicine, 5(3), 101–117.
  • Hossain, A., Senff, P., & Glaser, M. (2022). Lessons for coastal applications of IMTA as a way towards sustainable development: A review. Applied Sciences, 12(23), 11920.
  • Kang, D., Ong, P., & Roël, J. (2022). Building floating aquaculture farms with expanded polystyrene in Singapore. In WCFS2020: Proceedings of the Second World Conference on Floating Solutions (pp. 201–218). Springer Singapore.
  • Killer, M., Müller, J., Li, Y., & Friebe, S. (2023). Maximizing seaweed growth on autonomous farms: A dynamic programming approach for underactuated systems navigating on uncertain ocean currents. arXiv preprint arXiv:2307.01916.
  • Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9(10), 737–742.
  • Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., & Duarte, C. M. (2018). Sequestration of macroalgal carbon: The elephant in the Blue Carbon room. Biology Letters, 14(6), 20180236.
  • Lafeuille, B., Fleurence, J., Morançais, M., Stiger-Pouvreau, V., & Turgeon, S. L. (2023). Variation of the nutritional composition and bioactive potential in edible macroalga Saccharina latissima cultivated from Atlantic Canada subjected to different growth and processing conditions. Foods, 12(8), 1736.
  • Largo, D. B., Chung, I. K., Phang, S. M., Gerung, G. S., & Sondak, C. F. A. (2017). Impacts of climate change on Eucheuma–Kappaphycus farming. In Tropical Seaweed Farming Trends, Problems and Opportunities: Focus on Kappaphycus and Eucheuma of Commerce (pp. 121–129).
  • Moisez, E., Spilmont, N., & Seuront, L. (2020). Microhabitat choice in intertidal gastropods is species-, temperature-, and habitat-specific. Journal of Thermal Biology, 94, 102785.
  • Mora-Soto, A., Palacios, M., Macaya, E. C., Huovinen, P., & Gómez, I. (2020). A high-resolution global map of giant kelp (Macrocystis pyrifera) forests and intertidal green algae (Ulvophyceae) with Sentinel-2 imagery. Remote Sensing, 12(4), 694.
  • Morro, B., Vercelloni, J., Holon, F., & Bacher, C. (2022). Offshore aquaculture of finfish: Big expectations at sea. Reviews in Aquaculture, 14(2), 791–815.
  • Muniz, R. A., Oliveira, M. C., & Bastos, E. (2013). Algas marinhas do Monumento Natural das Ilhas Cagarras. In História, Pesquisa e Biodiversidade do Monumento Natural das Ilhas Cagarras – Série Livros (Vol. 48, pp. 49–61).
  • Nauer, F., & Lopes Filho, E. A. P. (2017). Introdução às macroalgas marinhas. In Botânica no Inverno 2017 (p. 15). Laboratório de Algas Marinhas.
  • Nemet, G. F., Fuss, S., Canadell, J. G., Tavoni, M., Smith, P., Peters, G. P., ... & Minx, J. C. (2023). Near-term deployment of novel carbon removal to facilitate longer-term deployment. Joule, 7(12), 2653–2659.
  • Nisa, A. C., Jatayu, D., & Alfiani, P. P. (2024). Growth performances and productivities of Kappaphycus alvarezii and Eucheuma spinosum cultivated with long-line method in PT. Sea Six Energy Indonesia. Journal of Aquaculture & Fish Health, 13(3).
  • Olanrewaju, S. O., Magee, A., Kader, A. S. A., & Tee, K. F. (2017). Simulation of offshore aquaculture system for macroalgae (seaweed) oceanic farming. Ships and Offshore Structures, 12(4), 553–562.
  • Park, J., Lee, S., Kim, H., & Han, T. (2024). Harnessing green tide Ulva biomass for carbon dioxide sequestration. Reviews in Environmental Science and Bio/Technology, 23(4), 1041–1061.
  • Queirós, A. M., Stephens, N., Widdicombe, S., Tait, K., McCoy, S. J., Ingels, J., ... & Quevedo, M. (2019). Connected macroalgal–sediment systems: Blue carbon and food webs in the deep coastal ocean. Ecological Monographs, 89(3), e01366.
  • Rombenso, A. N., Lisboa, V., & Sampaio, L. A. (2014). Mariculture in Rio de Janeiro, Brazil: An approach to IMTA. In World Aquaculture Society Conference (pp. 1–6). Adelaide, Australia: WAS.
  • Santos, A. A. (2023). Produção da macroalga Kappaphycus alvarezii em Santa Catarina, safra 2022/2023. Agropecuária Catarinense, 36(2), 7–9.
  • Schenuit, F., Geden, O., Boettcher, M., & Honegger, M. (2023). Secure robust carbon dioxide removal policy through credible certification. Communications Earth & Environment, 4(1), 349.
  • Smale, D. A. (2020). Impacts of ocean warming on kelp forest ecosystems. New Phytologist, 225(4), 1447–1454.
  • Solvang, T., Stene, A., & Broch, O. J. (2021). Automation concepts for industrial-scale production of seaweed. Frontiers in Marine Science, 8, 613093.
  • South, P. M., Floerl, O., Forrest, B. M., & Thomsen, M. S. (2017). A review of three decades of research on the invasive kelp Undaria pinnatifida in Australasia: An assessment of its success, impacts and status as one of the world's worst invaders. Marine Environmental Research, 131, 243–257.
  • Stenius, I., Westerlund, A., Ruohonen, K., & Salonen, K. (2022). A system for autonomous seaweed farm inspection with an underwater robot. Sensors, 22(13), 5064.
  • Taboada, C., Millán, R., & Míguez, I. (2010). Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. Journal of the Science of Food and Agriculture, 90(3), 445–449.
  • Thursby, G. B., & Steele, R. L. (2020). Sexual reproduction tests with marine seaweeds (macroalgae). In Fundamentals of Aquatic Toxicology (pp. 171–188). CRC Press.
  • Valdespino, P. M., López, A. A., Martínez, E. M., & Sánchez, M. G. (2022). Micromundos biominerales en las algas rojas. Revista Digital Universitaria, 22(6).
  • Vindel, J. M., Trincado, E., & Sánchez-Bayón, A. (2021). European Union Green Deal and the opportunity cost of wastewater treatment projects. Energies, 14(7), 1994.
  • Whiting, J. M., Berry, H. D., Parker, M., & Coleman, M. A. (2020). Simulating the trajectory and biomass growth of free-floating macroalgal cultivation platforms along the US west coast. Journal of Marine Science and Engineering, 8(11), 938.
  • Zhang, R., Zhang, X., Tang, Y., & Wang, W. (2020). Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydrate Polymers, 228, 115381.
  • Zhu, Y., Li, X., Wu, H., & Wang, J. (2025). The role of seaweed cultivation in integrated multi‐trophic aquaculture (IMTA): The current status and challenges. Reviews in Aquaculture, 17(3), e70042.

Licença

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2026 Thayssa Duarte Costa, Heloísa Arruda Soares de Oliveira, Dayanne Fonseca Bergamasco, Gabrielle Batista dos Santos, Larissa Rebeka Fratucello Alves, Sofia Baccan Arena