Impacto del fuego en los patrones espaciales de especies arbóreas en un bosque de Miombo en la provincia de Huambo (Angola)

Euclides Januário Siquilile, Daniel Michael Griffith, David Ariza Mateos, Guillermo Palacios Rodriguez

Resumo


DOI

R E S U M E N

Para evaluar el impacto del fuego en los patrones de distribución espacial de las especies arbóreas en el bosque Miombo de la Estación Experimental Chianga en la provincia de Huambo en Angola, se analizaron los patrones de agregación espacial y las relaciones interespecíficas de las 5 especies más frecuentes: Monotes dasyanthus, Psorospermum mechowii, Hymenocardia acida, Brachystegia tamarindoides y Albizia antunesiana, en dos hábitats bajo diferentes condiciones de manejo, uno con incendios moderados y otro sin incendios. Para analizar los patrones espaciales en las dos parcelas, utilizamos el software estadístico "Programita" basado en la función de segundo orden de Ripley K, tanto en su forma modificada L (r) como en su variante O (r) a partir de las posiciones mapeadas de puntos, en el recuento acumulado de individuos presentes en un radio creciente desde cada uno de los puntos del patrón espacial, se aplicó metodología de dos formas distintas: univariante y bivariante. Los resultados mostraron que, en general, el patrón agregado fue el más verificado en el estudio, generalmente resultando en una relación competitiva, aunque en ciertos momentos algunas especies han mostrado relaciones facilitadoras y repulsivas. Se concluye en este estudio, que las intensidades de los incendios ocurridos en el miombo de Chianga no fueron perjudiciales para las especies arbóreas estudiadas, y se recomienda aplicar fuego en el miombo de Chianga como elemento de manejo forestal, siempre que sea en régimen de intensidades intermedias y frecuencias controladas, por su papel en la renovación forestal y el mantenimiento de especies.

Palabras-Claves: fuego, miombo, especies, patrones espaciales


Palavras-chave


fogo, miombo, espécies, padrões espaciais.

Texto completo:

PDF (Español)

Referências


Amoako, E. E., Gambiza, J. (2019). Effects of anthropogenic fires on some soil properties and the implications of fire frequency for the Guinea savanna ecological zone, Ghana. Scientific African, (6), ISSN 2468-2276, https://doi.org/10.1016/j.sciaf.2019.e00201.

Archibald, S. (2016). Managing the human component of fire regimes: lessons from Africa. Phil. Trans. R. Soc.http://doi.org/10.1098/rstb.2015.0346.

Archibald, S., Hempson, G. P., y Lehmann, C. (2019). A unified framework for plant life‐history strategies shaped by fire and herbivory. New Phytologist, 224(4), 1490–1503.

Catarino, S., Romeiras, M. M., Figueira, R., Aubard, V., Silva, J. M. N., Pereira, J. M. C. (2020). Spatial and Temporal Trends of Burnt Area in Angola: Implications for Natural Vegetation and Protected Area Management. Diversity, 12, 307; DOI:10.3390/d12080307.

Chidumayo, E. (2017). Biotic interactions, climate and disturbance underlie the distribution of two Julbernardia tree species in miombo woodlands of Africa. Journal of Tropical Ecology, 33(1), 1-11. DOI:10.1017/S0266467416000584.

Chiteculo, V. y Surovy, P. (2018). Dynamic Patterns of Trees Species in Miombo Forest and Management Perspectives for Sustainable Production—Case Study in Huambo Province, Angola". Forests, 9(6). 321.

Diniz, A. C. (2006). Características Mesológicas de Angola. 2ª, Lisboa: Instituto Portugués de Apoyo al Desarrollo, Nova Lisboa. ISBN 972-8975-02-3.

Fortin, M. J. y Dale, M. (2005). Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge.

Furley, P. A., Rees, R.M., Ryan, C.M. y Saiz, G. (2008). Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Progress in Physical Geography: Earth and Environment. 32(6), 611-634. DOI:10.1177/0309133308101383.

Gumbo, D. J., Dumas-Johansen, M., Muir, G., Boerstler, F., Xia, Z. (2018). Sustainable management of Miombo woodlands – Food security, nutrition and wood energy. Rome, Food and Agriculture Organization of the United Nations.

Hao, H. Min., Huang, Z., & Lu, R., Jia, C., Liu, Y., Liu, Bing. R. y Wu, G. L. (2017). Patches structure succession based on spatial point pattern features in semi-arid ecosystems of the water-wind erosion crisscross region. Global Ecology and Conservation, 12, 158-165. DOI: 10.1016/j.gecco.2017.11.001.

Joseph, G. S., Seymour, C. L., Cumming, G. S., Mahlangu, Z. y Cumming, D. H. M. (2013). Escaping the flames: large termitaria as refugia from fire in miombo woodland. Landscape Ecol., 28, 1505–1516 https://doi.org/10.1007/s10980-013-9897-6

Law, R., Illian, J., Burslem, D. F. R. P., Gratzer, G., Gunatilleke, C. V. S. y Gunatilleke, I. A. U. N. (2009), Ecological information from spatial patterns of plants: insights from point process theory. Journal of Ecology, 97, 616-628. https://doi.org/10.1111/j.1365-2745.2009.01510.x.

Li, W. y Zhang, G. F. (2015). Population structure and spatial pattern of the endemic and endangered subtropical tree Parrotia subaequalis (Hamamelidaceae). Flora - Morphology, Distribution, Functional Ecology of Plants, 212,10-18, https://doi.org/10.1016/j.flora.2015.02.002.

Makumbe, P., Chikorowondo, G., Dzamara, P. C., Ndaimani, H., y Gandiwa, E. (2020). Effects of Fire Frequency on Woody Plant Composition and Functional Traits in a Wet Savanna Ecosystem. International Journal of Ecology, 1-11, DOI: 10.1155/2020/1672306.

Martinéz-Ramos, M. y Alvaréz-Builla, E. (1995). Ecología de poblaciones de plantas en una selva húmeda de México. Boletín de la sociedad botánica de México. 56, 121-153.

Metsaranta, J. M. y Lieffers, V. J. (2008). A fifty-year reconstruction of annual changes in the spatial distribution of Pinus banksiana stands: does pattern fit competition theory? Plant Ecology, 199, 137–152.

Meyer, K. M., Ward, D., Wiegand, K., Moustakas, A. (2008). Multi-proxy evidence for competition between savanna woody species. Perspectives in Plant Ecology, Evolution and Systematics, 10(1), 63-72. ISSN 1433-8319, https://doi.org/10.1016/j.ppees.2007.09.002.

Moeur, M. (1993). Characterizing spatial patterns of trees using stem-mapped data. For. Sci., 39, 756-775.

Mwansa, P. (2018). Investigating the impact of fire on the natural regeneration of woody species in dry and wet Miombo woodland. Environmental Science.

Pelletier, J., Paquette, A., Mbindo, K., Zimba, N., Siampale, A., Chendauka, B., Siangulube, F. y Roberts J. W. (2018). Carbon sink despite large deforestation in African tropical dry forests (miombo woodlands). Environmental Research Letters, 13(9), 4017.

Perry, G. L., Enright, N. J., Miller, B. P. y Lamont, B. B. (2013), Do plant functional traits determine spatial pattern? A test on species‐rich shrublands, Western Australia. Journal of Vegetation Science, 24, 441-452. https://doi.org/10.1111/j.1654-1103.2012.01476.x.

Pillay, T., Ward, D. (2012). Spatial pattern analysis and competition between Acacia karroo trees in humid savannas. Plant Ecology. 213, 1609–1619. https://doi.org/10.1007/s11258-012-0115-4.

Rayburn, A. P., Schiffers, K. y Schupp, E. W. (2011). Use of precise spatial data for describing spatial patterns and plant interactions in a diverse Great Basin shrub community. Plant Ecology. 212, 585–594. https://doi.org/10.1007/s11258-010-9848-0

Resco de Dios, V. (2020). Global Change, Pyrophysiology, and Wildfires, Plant-Fire Interactions, 10, (177-197). DOI: 10.1007/978-3-030-41192-3.

Ribeiro N. S., Cangela A., Chauque A., Bandeira R. R., Ribeiro-Barros A. I. (2017). Characterisation of spatial and temporal distribution of the fire regime in Niassa National Reserve, northern Mozambique. International Journal of Wildland Fire, 26(12), 1021-1029. https://doi.org/10.1071/WF17085.

Ribeiro, N., Miranda, P. y Timberlake, J. (2020). Biogeography and Ecology of Miombo Woodlands. DOI:10.1007/978-3-030-50104-4_2.

Rozas, V. y Camarero, J. J. (2005). Técnicas de análisis espacial de patrones de puntos aplicadas en ecología forestal. Invest. Agrar: Sist. Recur. For., 14, 79-97.

Ryan, C. M. y Williams, M. (2011). How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecological Applications, 21, 48–60.

Saito, M., Luyssaert, S., Poulter, B., Williams, M., Ciais, P., Bellassen, V., Ryan, C. M., Yue, C., Cadule, P., y Peylin, P. (2014). Fire regimes and variability in aboveground woody biomass in miombo woodland, J. Geophys. Res. Biogeosci., 119, 1014– 1029, DOI:10.1002/2013JG002505.

Schleicher, J., Meyer, K. M., Wiegand, K., Schurr, F. M. y Ward, D. (2011), Disentangling facilitation and seed dispersal from environmental heterogeneity as mechanisms generating associations between savanna plants. Journal of Vegetation Science, 22, 1038-1048. https://doi.org/10.1111/j.1654-1103.2011.01310.x.

Sichone, P., De Cauwer, V., Chissungui, A. V., Goncalves, F. M. P., Finckh, M. y Revermann, R. (2018). Patterns of above-ground biomass and its environmental drivers: an analysis based on plotbased surveys in the dry tropical forests and woodlands of southern Africa. In: Climate change and adaptive land management in southern Africa – assessments, changes, challenges, and solutions (ed. by Revermann, R., Krewenka, K. M., Schmiedel, U., Olwoch, J. M., Helmschrot, J. y Jurgens, N.), 309-316, Biodiversity & Ecology, 6, Klaus Hess Publishers, Göttingen & Windhoek. DOI:10.7809/b-e.00338.

Smith, M. J., Smith, J. D., Roberts, T., Hammond, J. y Davis, R. A. (2003). Intraspecific variation in the advertisement call of the sunset frog Spicospina flammocaerulea (Anura: Myobatrachidae): a frog with a limited geographic distribution. Journal of Herpetology, 37, 285-291.

Staver A. C., Archibald S, Levin S. A. (2011). The global extent and determinants of savanna and forest as alternative biome states. Science, 334(6053), 230–232.

Stevens, N., Archibald, S. A., Bond, W. J. (2018). Transplant Experiments Point to Fire Regime as Limiting Savanna Tree Distribution. Frontiers in Ecology and Evolution, 6.

Tarimo, B., Dick, O. B., Gobakken, T. y Totland, O. (2015). Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania. Carbon Balance Manage, 10, 18, https://doi.org/10.1186/s13021-015-0029-2.

Wiegand, T. y Moloney, A. (2004). Rings, circles and nullmodels for point pattern analysis in ecology. OIKOS, 104, 209-229.

Wiegand, T., Gunatilleke, S., Gunatilleke, N. y Okuda, T. (2007). Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088-3102. (http://www.oesa.ufz.de/towi/towi_programita.html)

Wigley, B. J., Charles-Dominique, T., Hempson, G. P., Stevens, N., TeBeest, M., Archibald, S., Bond, W. J., Bunney, K., Coetsee, C., Donaldson, J., Fidelis, A., Gao, X., Gignoux, J., Lehmann, C., Massad, T. J., Midgley, J. J., Millan, M., Schwilk, D., Siebert, F., Solofondranohatra, C., Staver, A. C., Zhou, Y. y Kruger, L. (2020). M. A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 68(8), (473), DOI: 10.1071/BT20048.

Zenteno-Ruíz, F. S., López, R. P. y Larrea-Alcázar, D. M. (2009). Patrones de distribución espacial de Parodia maassii (Heese) A. Berger (Cactaceae) en un semidesierto de los Andes subtropicales, la prepuna. Ecol. en Bolivia, 44(2), 99-108.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2021 Euclides Januário Siquilile

Meio Ambiente (Brasil) | ISSN: 2675-3065

CC-BY 4.0 Revista sob Licença Creative Commons
Language/Idioma
02bandeira-eua01bandeira-ingla
03bandeira-spn